
Heuristics for a multi-machine multi-objective job
scheduling problem with smoothing costs

Proceeding for the GOL 2012 conference

Jean Respen
HEC - University of Geneva

Switzerland

jean.respen@unige.ch

Nicolas Zufferey
∗

HEC - University of Geneva

Switzerland

nicolas.zufferey-hec@unige.ch

Edoardo Amaldi
DEI - Politecnico di Milano

Italy

amaldi@elet.polimi.it

ABSTRACT
We propose a new multi-objective job scheduling problem on
non-identical machines involving job and machine dependent
setup costs and times, as well as smoothing costs. Smooth-
ing issues are very important in several settings, such as for
example car production, since they allow to balance resource
utilization over an assembly line. In this paper, we describe
the problem, give a mixed integer linear programming for-
mulation, and propose several heuristics: three greedy pro-
cedures, two descent approaches, and a tabu search. Ex-
periments, performed on realistic and challenging instances
with up to 500 jobs and 8 machines, show that tabu search
is a powerful method: it gives the best results for the large
instances and is very competitive on the small instances.

General Terms
Metaheuristics, job scheduling, multi-resource

1. INTRODUCTION
Multi-objective scheduling problems often involve minimiz-
ing the makespan while considering setup costs and times.
Various approaches have been proposed to tackle makespan
minimization in the literature (see [8] for a good reference
book). For a survey on scheduling techniques accounting for
setup issues, the reader is referred to [1].

Nowadays, new constraints, known as smoothing constraints,
are attracting a growing attention in the area of job schedul-
ing (see the survey on smoothing constraints known as ”bal-
ancing in assembly line” in [2]) and in particular for car
sequencing problems, where cars must be scheduled before
production in an order respecting many constraints (colors,
options, due dates, etc.), while avoiding overloading some
important resources. As an example, if the yellow cars with
air-conditioning are scheduled first, the unlucky costumer

∗Corresponding author.

who ordered a grey car without air-conditioning may wait
for a long time. For the car plant, balancing between op-
tional equipments and colors allows to respect customers
deadlines and to prevent overloading resources (machines
or employees), which has an impact on cost reduction. As
mentioned in [12], there is a complex tradeoff at the core of
many practical scheduling problems, which involves balanc-
ing the benefits of long production runs of a similar product
against the costs of completing work before it is needed (and
potentially causing other work to be tardy).

Part of the above problem was the subject of the ROADEF
2005 Challenge (http://challenge.roadef.org/2005/en/)
proposed by the car manufacturer Renault, where instances
involve hundreds of cars and thus no exact algorithm can be
competitive. In the Renault problem, car families are de-
fined so that two cars of the same family contain the same
optional equipments. Each car option i is associated with
a pi/qi ratio constraint, meaning that at most pi vehicles
with option i can be scheduled in any subsequence of qi ve-
hicles, otherwise a penalty occurs. Another goal consists
in minimizing the number of color changes in the produc-
tion sequence. Thus, the overall objective is to minimize a
weighted function involving the numbers of ratio constraint
violations and color changes. A simplified version of this
problem was proved to be NP-hard in [6], and a survey of the
above challenge can be found in [11]. The winner team pro-
posed a local search algorithm called very fast local search
(VFLS), and the second team proposed a variable neighbor-
hood search (VNS) in combination with an iterated local
search (ILS) procedure. The VFLS heuristic is described in
[4] and is the conjunction of a standard local search with
a tuned transformation step. [9] described a set of heuris-
tics, based on the paradigms of VNS and ILS metaheuristics,
along with intensification and diversification strategies. The
tabu search proposed in [3] was ranked 7th.

In this work, we define and investigate a multi-objective pro-
duction problem (P) with smoothing costs inspired by the
Renault problem. Unlike the latter problem, we consider
several non-identical machines (resources), eligibility con-
straints (a job cannot necessarily be performed on all the
machines), and setup constraints. We aim at minimizing in
a lexicographic way the overall makespan, setup costs and
smoothing costs.

The remainder of the paper is organized as follows. In Sec-

tion 2, we describe the problem (P), pointing out the differ-
ences with respect to the Renault problem, and we give a
mixed integer linear programming (MILP) formulation. An
interpretation as a variant of the vehicle routing problem
(VRP) is mentioned in Section 3. Since the MILP formu-
lation is very challenging even for small-size instances, in
Section 4 we propose several heuristics, ranging from simple
greedy procedures to a tabu search metaheuristic. Com-
putational results are reported and discussed in Section 5.
Finally, Section 6 contains some concluding remarks along
with possible future work.

2. PROBLEM AND MILP FORMULATION
In the considered problem (P), a set of n jobs have to be
scheduled on a set of m non-identical parallel machines.
Each job j belongs to one of the g available families and
has a processing time pij depending on the machine i. For
each pair of job j and machine i, the eligibility of j on i is
specified by the binary parameter ui

j . The goal consists in
minimizing a cost function taking into account makespan,
smoothing costs and setup costs. A lexicographic approach
is considered with the following priority order: makespan
> smoothing costs > setup costs. As proposed below in
Equation (1), the lexicographic optimization is achieved via
coefficients α > β > γ > 0, where the makespan Cmax also
involves a scaling parameter ω > 0. A small value of Cmax

usually indicates a high occupancy rate of the machines,
and as a consequence, the production system will be avail-
able sooner for future commands. Note that Ci

max denotes
the completion time of machine i.

The setups are job and machine dependent: cijj′ (resp. s
i
jj′)

is the setup cost (resp. time) encountered to prepare ma-
chine i to perform job j′ after job j. There are two types
of setups: major (if the involved jobs belong to two differ-
ent families) and minor (otherwise). Minor setups can be
considered as a small encountered time/cost if a technician
needs to slightly modify the configuration of the machine to
perform the next job. On the opposite, a major setup occurs
when external technicians (working at a higher hourly rate
and bill for transportation) or a significant machine transfor-
mation (e.g., its capacity, its reprogramming) are required.

Consider the following sets of binary decision variables: 1)
for every machine i and pair of jobs {j, j′}, xi

jj′ = 1 if job

j is followed by job j′ on machine i, and 0 otherwise; 2)
for every machine i and triple of jobs {j, j′, j′′}, yi

jj′j′′ = 1

if jobs j, j′, j′′ are consecutively scheduled on machine i, 0
otherwise; 3) for every machine i and job j, zij = 1 if job j
is scheduled on machine i, and 0 otherwise.

In addition, let rij be the position index of job j if it is
scheduled on machine i. For every triple of jobs {j, j′, j′′},
fjj′j′′ = 1 if j, j′, j′′ are of the same family, and 0 otherwise.
Finally, let kf be the smoothing cost associated with the
family f to which job j belongs, which is encountered only
if fjj′j′′ = 1 and yjj′j′′ = 1.

Using these variables, the problem can be formulated as the
following mixed integer linear program: minimize

α·
∑

i

∑

j,j′

cijj′ ·x
i
jj′ + β·

∑

i

∑

j,j′,j′′

kj· fjj′j′′ ·y
i
jj′j′′ + γ·ω·Cmax (1)

subject to the following constraints:
∑

j

pij · z
i
j +

∑

j,j′

sijj′ · x
i
jj′ ≤ Cmax ∀i (2)

(2− ui
j − ui

j′) · x
i
jj′ = 0 ∀i, j, j′ (3)

zij ≤ ui
j ∀i, j (4)

zij + zij′ ≥ 2 · xi
jj′ ∀i, j, j′ (5)

2 · yi
jj′j′′ ≤ (xi

jj′ + xi
j′j′′) · fjj′j′′ ∀i, j, j′, j′′ (6)

(xi
jj′ + xi

j′j′′) · fjj′j′′ − 1 ≤ yi
jj′j′′ ∀i, j, j′, j′′ (7)

∑

j

zij − 1 =
∑

j,j′

xi
jj′ ∀i (8)

∑

j′

xi
jj′ ≤ 1 ∀i, j (9)

∑

j

xi
jj′ ≤ 1 ∀i, j′ (10)

zij ≤ rij ≤ n · zij ∀i, j (11)

rij′ ≥ (rij + 1)− n · (1− xi
jj′) ∀i, j, j′ (12)

xi
jj′ + xi

j′j ≤ 1 ∀i, j, j′ (13)
∑

i

zij = 1 ∀j (14)

0 ≤ yi
jj′j′′ ≤ 1 ∀i, j, j′, j′′ (15)

xi
jj′ , z

i
j ∈ {0, 1} ∀i, j, j′ (16)

Constraints (2) guarantee a correct makespan com-
putation. Constraints (3) and (4) ensure that eligibility is
satisfied on each machine. Constraints (5) allow two jobs
to be scheduled consecutively only if they are scheduled on
the same machine, while Constraints (6) and (7) ensure that
three jobs can be scheduled consecutively only if all the three
jobs are scheduled consecutively two at a time. Constraints
(8) guarantee that the correct number of jobs will be con-
secutively scheduled, while Constraints (9), (10) and (13)
ensure the correct number of consecutive jobs. Constraints
(11) and (12) are the subtour elimination constraints given
in [10]. Constraints (14) guarantee that each job is sched-
uled exactly once. Finally, fractional values are possible in
Constraints (15) because of the objective function (1) and of
the Constraints (6) and (7). Clearly, relaxing the integrality
of the yi

jj′j′′ variables makes the MILP formulation easier.

3. GRAPH INTERPRETATION
Assuming that setup costs are proportional to setup times
(which is realistic from a practical standpoint), our produc-
tion problem can be easily interpreted as a variant of the
well-known Vehicle Routing Problem (VRP) on a graph.

Let the n jobs be represented by n vertices labeled 1, . . . , n
of a complete directed graph G = (V,E). A color is asso-
ciated with each job family. Since each vertex belongs to a
unique family, it has a single color and the vertices can be
grouped by color. Each vertex is connected to all the others
vertices by an arc. Arcs are used instead of edges as setup
times are not necessarily symmetric. If two vertices are of
the same family, then the arc linking them is colored with
the family color and the corresponding setup time is minor.
Otherwise, the arc is uncolored and the setup time is major.

Two vectors are associated with each arc (j, j′): a processing
time vector Pj′ = (p1j′ , p

2
j′ , . . . , p

m
j′) and a setup time vector

Sjj′ = (s1jj′ , s
2
jj′ , . . . , s

m
jj′). In addition, a virtual uncolored

vertex labeled 0 is defined. With each arc (0, j) are asso-
ciated a processing time vector Pj = (p1j , p

2
j , . . . , p

m
j), and

a setup time vector S0j where si0j = 0 for each machine i.
With each arc (j, 0) are associated a processing time vector
P0 where pi0 = 0 for each machine i, and a setup time vector
Sj0 where sij0 = 0 for each machine i.

In the VRP, n clients have to be visited exactly once by
a set of m vehicles so as to optimize an objective function
(see [7] for a recent survey). Here the clients correspond to
the jobs, the vehicles to the machines, and the sequence of
vertices visited by vehicle i to the sequence of jobs executed
by machine i. Given the graph G, the objective is to find m
circuits (starting from and ending at vertex 0, representing
a depot), such that every vertex is visited exactly once. A
smoothing cost is paid each time a circuit visits consecutively
three or more vertices within the same color class (and is
thus a special case of the pi/qi ratio of the Renault problem,
where pi = 2 and qi = 3).

An illustration with n = 8 and m = 2 is given in Figure
1, where edges are used instead of arcs for the sake of sim-
plicity (the graph is not drawn complete for the same rea-
son). Vertices are grouped by color classes, and dashed edges
connecting vertices of different color classes are uncolored.
On the contrary, colored plain edges connect vertices of the
same color class. A double weighted edge [1, 2] is indicated
as an example: job 1 has a processing time of 110 on ma-
chine 1 and 135 on machine 2; a minor setup of 6 occurs
when finishing job 1 and preparing machine 1 for job 2, and
the corresponding setup for the second machine is 8. Fig-
ure 2 shows a feasible solution for the instance of Figure 1.
Note that the circuit visiting the first color class encounters
a smoothing cost because it consecutively visits the three
vertices with that color.

4. HEURISTICS
In this section, we describe different greedy algorithms for
(P), as well as various local search techniques, namely a
descent method, a descent with a learning process, and a
tabu search. All theses methods will be compared according
to a time limit of t seconds. If a method stops before t, it
is restarted as long as t is not reached, and the provided
solution is the best one generated within t seconds. For
the greedy algorithm, each restart occurs when a complete
solution is built, whereas for a descent method, each restart
occurs when a local optimum is found.

In the greedy procedures, to build a feasible solution step
by step from scratch, we select at each step an unscheduled
job and insert it at the best position (i.e., leading to the
least augmentation of the objective function value), while
respecting eligibility and setup constraints. Different job se-
lection criteria are considered: 1) randomly among all the
unscheduled jobs; 2) the least flexible job first (the flexibil-
ity of a job is defined as the number of machines it can be
performed on); 3) exhaustive search (each insertion is tested
for each non performed job). We propose three greedy pro-
cedures for (P): GrR which is the greedy algorithm based on
the random selection process, GrF based on the flexibility

strategy, and GrE based on the exhaustive strategy. Ties
often occur and are always randomly broken.

A basic local search starts from an initial solution x0 and
then successively generates a sequence of solutions x1, x2, . . .
in the search space such that xr+1 ∈ N(xr), where N(xr)
denotes the set of neighbor solutions of xr. To generate xr+1

from solution xr, the algorithm performs a specific modifica-
tion, called a move. The process is stopped when a specific
criterion is met (e.g. a time limit). In a descent algorithm,
the best move is performed at each iteration and the pro-
cess stops when the first local optimum is found. In a tabu

search, when a move is performed from xr to xr+1, the re-
verse move is forbidden (tabu) for tab (parameter) itera-
tions. The reader interested in more information on local
search techniques, and more generally on metaheuristics, is
referred to [5].

The proposed local search techniques for (P) are: Des
(a descent), LDes (a descent with a learning process), and
TS(a tabu search). InDes as well as in LDes, the best move
out of a portion of r% of all possible moves is performed at
each iteration, whereas in TS, r% of the non tabu neighbor
solutions are generated and the best one among this random
sample is selected. Preliminary experiments showed that
r = 10% is a an appropriate choice. The specificities of
these three methods are now presented.

In all the proposed local search algorithms, a move consists
in reinserting a job somewhere else in the solution. More pre-
cisely, a job can be moved to a different position on the same
machine, or it can be moved from a machine to another (as
long as the eligibility constraint is satisfied). In TS, when
a job has been moved, it is tabu to move it again for tab
iterations, where preliminary experiments showed that it is
reasonable to choose the integer tab uniformly at random in
[n
25
, n
13
]. Moreover, a second tabu structure is used: when

a job j, initially positioned between jobs j′ and j′′, is rein-
serted somewhere else in the schedule, it is then tabu to
move j back between j′ and j′′ for 2 · tab iterations (as this
second tabu structure is less restrictive than the first one,
the tabu duration is set to a larger value). Note that when
a move improves the best ever visited solution, its two as-
sociated tabu durations are increased by a random integer
uniformly generated within interval [n

25
, n
15
].

An important issue is the way initial solutions are gener-
ated for the local search heuristics. In Des and in TS, the
initial solution is always generated with GrE. LDes is a
two-phase algorithm. In the first phase, the three greedy al-
gorithms are alternately used if the running time is not above
t
2
seconds. At the end of such a learning phase, a weight is

assigned to each of the three greedy procedures, and such
weights are proportional to the average quality of the re-
sulting solutions (i.e., the ones obtained at the end of the
descent process). In the second phase, the next greedy algo-
rithm to apply is randomly selected based on those weights.
Thus, the greedy procedure leading in average to the best
results in the first phase has more chance to be selected in
the second phase.

0

1

2

P
=

(1
1

0
, 1

3
5

)
S

=
(6

,8
)

Color class 1

Color class 2

Color class 3

Figure 1: Graph representation of the problem

0

Color class 1

Color class 2

Color class 3

Figure 2: A possible feasible solution for Figure 1

5. COMPUTATIONAL RESULTS
In this section, we first describe the instances used in the
computational experiments and then summarize the results
and compare those obtained with all the proposed heuristics.
Tests were performed on an Intel Quad-core i7 @ 3.4 Ghz
with 8 Go DDR3 of ram memory, and the time limit t is 3600
seconds. As TS is not a method with restarts, its results are
averaged over five runs.

As (P) is a new problem, we generated dedicated instances.
Each instance is characterized by: the number of jobs n ∈
{100, 200, 300, 400, 500}, the integer number of machinesm ∈
[3, 8], the number of families g = max{⌈0.02 · n⌉, 2}, the
family identifier fj for each job j, the processing times pij of
each job j on each machine i uniformly generated within
[100, 200], the setup costs sij uniformly generated within
[30, 50] for major setups and within [5, 10] for minor setups
(we choose cij = sij), and the smoothing cost kf of family f
uniformly generated within [40, 60]. To ensure the respect
of the lexicographic order, we used α = 1, β = 1, 000, γ =
1, 000, 000. In addition, we set ω = 1.

First, we have tested the MILP formulation (1)-(16) with
CPLEX 12.4 using AMPL. The problem turns out to be
challenging since the formulation does not allow to solve to
optimality instances with 30 jobs and 4 machines within a
time limit of 10 hours. For instances with 20 jobs and 5 ma-
chines, CPLEX finds optimal solutions within 145 minutes,
while tabu search is able to do so within 3 minutes.

The computational results obtained with the heuristics on
larger instances are summarized in Table 1. The first two
columns indicate the values of n and m (observe that there
are three instances per couple (n,m)). The third column
(f⋆) corresponds to the objective function value of the best
solution ever found by any of the algorithms. The following
column reports the percentage gap between the solution of
GrR and f⋆. The next columns provide the same informa-
tion for the other methods. The average results reported in
the last line of Table 1, show that TS performs better in
terms of average solution quality than the other algorithms
and suggest the following order of decreasing solution qual-
ity: TS, LDes, Des, GrE, GrR, GrF . Not surprisingly the
greedy procedures are the fastest ones. For example, GrE
needs less than a second if n = 100 and less than two min-
utes if n = 500. It is interesting to notice that even for a
complex problem like (P), greedy algorithms are still good
enough for small instances. On average, it however appears
that GrR and GrF are significantly outperformed by the
other methods. The best greedy procedure is clearly GrE,
which confirms that it is a good choice to use it to gener-
ate initial solutions for local search algorithms. This also
shows that the selection of the next job to schedule has an
important impact on the final solution quality. For larger
instances, local search techniques tend to give the best re-
sults. It seems that the learning process of LDes is relevant,
as it slightly improves Des. Finally, TS finds good-quality
solutions even for small instances and is likely to find the
best solutions for large instances. Note that TS finds the

best solutions for 22 out of the 30 instances (see the bold
numbers), and has a gap above 1% only for four instances.
Since, unlike for the other heuristics, the results of TS are
averaged over five runs, it can happen that a bold number
in the TS column is not the smallest number of the corre-
sponding line. In summary, TS is a good alternative when
the solution quality is more important than speed, for ex-
ample when important savings can be achieved with only a
slight improvement in solution quality.

Table 1: Computational results

n m f⋆ GrR GrE GrF Des LDes TS

100 3 4,328,786,571 5.45 1.18 6.39 0.03 0.00 1.09

100 3 4,245,912,803 5.83 0.53 5.47 0.56 0.34 0.31

100 3 4,426,440,790 5.11 0.08 5.11 0.09 0.09 0.12

100 4 3,391,950,505 5.53 0.00 20.29 0.00 0.00 4.14

100 4 3,092,572,911 6.71 0.73 6.77 0.74 0.72 0.44

100 4 3,191,912,833 7.55 0.17 7.72 0.17 0.17 0.35

200 4 6,590,860,334 10.09 2.39 8.57 0.03 0.00 0.78

200 4 6,498,914,381 10.15 0.53 10.08 0.08 0.18 0.59

200 4 7,393,134,327 1.83 3.26 0.95 0.30 0.13 0.32

200 5 5,379,374,024 9.86 10.96 8.37 1.86 2.11 0.59

200 5 5,324,665,984 9.77 7.14 8.55 2.74 3.29 0.43

200 5 5,069,039,647 11.15 2.55 10.49 2.54 2.54 0.47

300 5 7,599,797,593 11.88 9.13 12.31 9.48 9.98 0.49

300 5 8,807,918,149 8.02 4.18 0.92 0.00 0.19 1.06

300 5 7,681,543,177 13.15 0.82 23.28 0.73 0.84 0.22

300 6 6,020,430,266 13.61 0.15 12.30 0.00 0.19 0.36

300 6 6,776,973,326 12.06 7.58 8.41 20.26 0.00 2.47

300 6 7,497,225,254 12.06 2.92 22.08 0.45 0.50 0.32

400 6 8,145,401,006 15.14 0.23 15.24 0.05 0.17 0.29

400 6 11,859,026,355 10.86 0.42 15.15 0.00 0.11 0.31

400 6 9,037,098,794 12.73 1.47 8.42 0.29 0.76 0.36

400 7 7,454,156,110 13.48 5.63 11.76 5.32 5.49 0.46

400 7 7,116,299,800 13.48 7.49 13.62 2.72 2.41 0.28

400 7 6,983,854,842 16.71 0.66 16.97 0.00 0.10 0.39

500 7 9,029,251,346 15.40 1.72 16.64 1.31 1.34 0.29

500 7 9,042,559,903 13.64 1.42 14.76 0.59 1.06 0.12

500 7 9,058,870,658 13.01 5.49 12.78 2.87 2.94 0.54

500 8 7,691,897,956 15.54 8.99 16.63 2.46 2.30 0.28

500 8 7,448,592,060 15.83 0.50 15.55 0.47 0.21 0.09

500 8 7,469,847,076 15.39 1.76 16.87 0.73 0.51 0.20

Avg 11.03 3.00 11.75 1.90 1.29 0.60

6. CONCLUSIONS
We proposed a new multi-machine multi-objective job schedul-
ing problem with interesting applications, for example in
the car industry. The problem includes the following realis-
tic features: jobs of various families, different machines (or
production resources), makespan minimization, machine el-
igibility, machine and job dependent setup times and costs,
as well as smoothing costs. We gave a MILP formulation

and developed and compared several heuristics for this prob-
lem, ranging from simple greedy procedures to a tabu search
metaheuristic. When the number of jobs increases, tabu
search tends to provide the best solutions and is very com-
petitive in terms of solution quality and computing time
ratio.

Future work includes an improved tabu search algorithm
with diversification and intensification mechanisms, as well
as additional metaheuristics (as genetic or hybrid algorithms).
Experiments on special cases of the problem with available
benchmark instances would also be interesting since they
would allow comparison of the proposed heuristics with ex-
isting ones.

7. REFERENCES
[1] A. Allahverdi, C. Ng, T. Cheng, and M. Kovalyov. A

survey of scheduling problems with setup times or
costs. European Journal of Operational Research,
187(3):985 – 1032, 2008.

[2] C. Becker and A.Scholl. A survey on problems and
methods in generalized assembly line balancing.
European Journal of Operational Research, 168(3):694
– 715, 2006.

[3] J.-F. Cordeau, G. Laporte, and F. Pasin. Iterated
tabu search for the car sequencing problem. European
Journal of Operational Research, 191(3):945 – 956,
2008.

[4] B. Estellon, F. Gardi, and K. Nouioua. Two local
search approaches for solving real-life car sequencing
problems. European Journal of Operational Research,
191(3):928 – 944, 2008.

[5] M. Gendreau and J.-Y. Potvin. Handbook of

Metaheuristics. International Series in Operations
Research & Management Science. Springer, 2010.

[6] I. P. Gent. Two results on car-sequencing problems.
Report APES-02-1998, 1998.

[7] G. Laporte. Fifty years of vehicle routing.
Transportation Science, 43(4):408 – 416, Nov. 2009.

[8] M. Pinedo. Scheduling: Theory, Algorithms, and

Systems, third edition. Prentice Hall, 2008.

[9] C. C. Ribeiro, D. Aloise, T. F. Noronha, C. Rocha,
and S. Urrutia. A hybrid heuristic for a multi-objective
real-life car sequencing problem with painting and
assembly line constraints. European Journal of

Operational Research, 191(3):981 – 992, 2008.

[10] H. D. Sherali and P. J. Driscoll. On Tightening the
Relaxations of Miller-Tucker-Zemlin Formulations for
Asymmetric Traveling Salesman Problems. Operations

Research, 50(4):656 – 669, 2002.

[11] C. Solnon, V. Cung, A. Nguyen, and C. Artigues. The
car sequencing problem: Overview of state-of-the-art
methods and industrial case-study of the ROADEFŠ
2005 challenge problem. European Journal of

Operational Research, 191(3):912 – 927, 2008.

[12] S. Webster, P. D. Jog, and A. Gupta. A genetic
algorithm for scheduling job families on a single
machine with arbitrary earliness/tardiness penalties
and an unrestricted common due date. International
Journal of Production Research, 36 (9):2543 – 2551,
1998.

